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Calculation of the renormalised quantum stress tensor by 
adiabatic regularisation in two- and four-dimensional 
Robertson-Walker space-times 

T S Bunch 
Department of Mathematics, King’s College, Strand, London WC2R 2LS, UK 

Received 3 October 1977 

Abstract. Adiabatic regularisation is Lsed to obtain the vacuum expectation value of the 
stress tensor for a conformally coupled massless scalar field in two- and four-dimensional 
Robertson-Walker space-times. The results obtained agree with previous work using 
point-splitting (including the accepted value for the anomalous trace) but the details of the 
calculation are very much simpler and more elegant. 

1. Introduction 

The problem of obtaining a finite renormalised value for the stress tensor of a 
quantum field propagating in a curved space-time as an expectation value of some 
quantum state has generated much recent interest. The main difficulty encountered is 
that the expressions obtained are always formally infinite and some method of 
regularisation is required to remove the infinities. One method which has enabled a 
number of explicit calculations to be performed is known as covariant geodesic 
point-splitting (Davies and Fulling 1977, Davies et a1 1977). Early point-splitting 
calculations led to expressions which were ambiguous because they depended on the 
tangent vector, P ,  to the geodesic along which points were separated. More recently a 
method for removing these ambiguities has been developed based on the De Witt- 
Schwinger expansion, and calculations have been performed which lead to an unam- 
biguous, finite, conserved stress tensor (Bunch and Davies 1978a, b). The procedure 
is to subtract the terms in the DeWitt-Schwinger expansion calculated by Christensen 
(1976a, b) which contain no more than n derivatives of the metric, where n is the 
dimension of the space-time, from the exact expression for (T,,), the expectation 
value of the stress tensor, obtained by point-splitting. This regularisation procedure is 
the same as the adiabatic regularisation scheme of Parker and Fulling (Parker and 
Fulling 1974, Fulling er a1 1974) a fact which has been verified explicitly in two 
dimensions by a point-splitting calculation of the divergent integrals obtained in 
adiabatic regularisation (Bunch 1977, T S Bunch, S M Christensen and S A Fulling 
1978, in preparation), giving expressions which agree exactly with those obtained by 
Christensen using the De Witt-Schwinger expansion. 

In this paper it will be shown how two results previously obtained by long 
point-splitting calculations can be obtained very quickly by using adiabatic regularisa- 
tion directly. This is achieved by performing the subtractions which affect the 
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regularisation before the integrals are evaluated. The integrals are consequently finite, 
and point-splitting is therefore not required for their evaluation. 

2. Adiabatic regularisation in two dimensions 

In this section the renormalised stress tensor for a massless scalar field propagating in 
a two-dimensional Robertson-Walker space-time will be calculated. The metric is 
taken in conformally flat form as: 

ds2=C(q)(dq2-dX2)=C du du (2.1) 

where the null coordinates U and U are U = 77 - x ,  U = q +x. The normalised positive- 
frequency mode functions are & given by 

e-iku 
and 

e-iku 
(472k)l” 0’72’ 

The stress tensor for a massive scalar field is: 

Thus the components of the stress tensor in the null coordinate system are: 

The divergent vacuum expectation values of (2.4) for a massless field are, using (2.2): 

From these must be subtracted the divergent integrals which arise in adiabatic 
regularisation. These are obtained by taking the general solution of the massive scalar 
wave equation to be 

J 

where the functions +k satisfy 

with w2k = k2 + Cm2, and are normalised according to 

&a,,& - *Xa,*k = i. (2.8) 

A generalised WKB solution of (2.7) has been given by Chakraborty (1973): it is this 
solution which gives rise to the adiabatic vacuum, IO), with respect to which one 
obtains (OIT,ulO), the divergent quantity to be subtracted from (2.5). It is essential to 
calculate (01 T,,IO) only up to adiabatic order T-” (n derivatives of the metric) where n 
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is the dimension of the space-time. This gives for the normalised positive-frequency 
WKB solutions: 

Substituting (2.6) and (2.9) into the vacuum expectation values of (2.4) gives 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where wk is obtained to adiabatic order T-' from (2.10) and (2.11): 

wk = wk +T+T; A2=--L gC''m2; B 2  = &C1*m4. (2.15) 

The prime denotes differentiation with respect to 7. Since wk = W-k, (2.12)-(2.14) 
can be rewritten as: 

A' B 2  
w k  wk 

( O ~ T u . / O ) = ( O ~ T u u ~ O ) = - ~  1 " d k  -[ W : + k 2 + ~ ( ~ ) 2 ]  
8T 0 wk 4 wk 

(2.16) 

(2.17) 

Substitute (2.15) into (2.16) and subtract this from (2.5) to obtain 

+- C'2k2m4) dk (2.18) 

where it is understood that the limit m + 0 is to be taken at the end. The first integral is 
a finite quantity which vanishes as m + 0. The second is independent of m and can be 
evaluated by the substitution k = m e t a n  8 to give: 

1 C"k2m2 7 C 2 m 4  
w :  4 wsk 4 w ;  

Similarly 

(2.19) 
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where R is the Ricci scalar. Consequently one obtains from (2.19) and (2.20) 

R 
(Tfiu)ren = - K g w u  + eLru 

where 

which is the result obtained by Davies et al (1976). 

3. Adiabatic regularisation in four dimensions 

In this section the renormalised stress tensor will be obtained for a conformally 
coupled massless scalar field propagating in a spatially flat four-dimensional Robert- 
son-Walker metric: 

ds2 = dt2 - a 2(t)(dX2 + dy2 + dz2) (3.1) 
which implies that 

ds2 = C(q)(dq - d X 2  - dy2 - dz2) 

where C(q)= a2( t )  and q = la-' dt. 
Because of the conformal invariance, positive-frequency-mode solutions exist 

given by C-1/2 times the Minkowski-space-mode solutions. These give rise to ( Tff)div 
given by equation (5.29) of Fulling et a1 (1974): 

where a, = aoq = (q2+m2u2)1/2 = (q2+Cm2)'/2(note that the factor (47r2a2)-' in 
(5.29) of Fulling et a1 should read (47r2a3)-'). The quantity to be subtracted from this 
is given by (5.30) of Fulling et a l :  

where the prime denotes differentiation with respect to 77. Subtracting (3.4) from (3.3) 
gives the finite quantity: 

( Tffjren = -1 1" 42 [ - 1 ( -)2 a: -- 1 ( -)'Ez n; + - 1 ( - ) E ;  a; + ;a&:] 1 dq. 
8~ U 0 R, 4 a4 8 SZ,  4 a4 

The quantity c2 is: 

Substituting (3.6) into (3.5) leads to 

(T,,),,, = -7 q2[$(sZ~)2fl,3 -%(fl;)'lI,' 
1 "  

87r a I, 

(3.5) 
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Now substitute R, = (4’+ Cm2)”’, integrate, and take the limit m + 0 to obtain: 

Putting a’ = C, D = C‘ /C  and changing to (T,,),,, gives: 

(T,,),,, = (288On2C)-’($D’’D - $D’2 - fD4)>.  ( 3 . 8 )  
In principle (T,,),,, could be obtained in the same way (although not by using the 
expressions in Fulling et a1 since these were obtained from (T,),,, by the assumption, 
now known to be false, that (Ta”),,, = 0). However, since (T,,),,, must be covariantly 
conserved, it is much simpler to use the covariant conservation law to fix (T,,),,,; this 
requires that: 

a,(T, ,Xen+~D(T, , )ren+$D(T,x) ,en = 0. (3.9) 
Thus from (3 .8 )  and (3.9) one obtains: 

(Txx)ren= (288O~*C)-’(-D’’’+~D”D -io”+ D ‘ D 2 - @ 4 ) .  (3.10) 

Finally (3.8) and (3.10) can be combined to give the result obtained by Davies et a1 
(1977): 

(T,,),,, = (288On2)-’(-~“’H,, + ‘3’H,y) 

where 

(l)HLLY = 2R,,, - 2 0 Rg,, + 2(RRWu -$R’g,,) 
1 2  

a w e u  + E R  gwv. (3)H = -R“@R 
,U 
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